Software Modeling & Analysis

- Introduction -

BMZ

http://cse.konkuk.ac.kr/

. HTA: NBEHB 12198

« E-mail: sjjung.dslab@gmail.com
— [2019SMA]OOO~

(0 D EEEEEEEEE SOFTWARE I{l]’ EKONKUK
LYy LABORATORY TNTVERSITY
E 4

http://cse.konkuk.ac.kr/

An Introduction to
Object-Oriented Development (OOD)
& Software Engineering (SE)

http://cse.konkuk.ac.kr/

Software Development

« Software Development = Solving Problem with Software in Computer

Business Process

Natural Language

— Descriptions of Problems = ¥
(through Identifying Requirements)

A Big Gap between Languages

Programming Language
~ — Descriptions of Solutions

(through Designing Programs)

Program Execution
with Computer System

EPENDABLE SOFTWARE KO I‘ I 1 I
“ peenad | KU 4

http://cse.konkuk.ac.kr/

Software Development

 Software Development = Solving Problem with Software in Computer

Problems Natural Language

— Descriptions of Problems

In real WOfld (through Identifying Requirements)

: Pro ramming Lan ua e
Solutions J J J g
: ~ — Descriptions of Solutions
In Compm:er (through Designing Programs)
N — Program Execution
) @ J;j::x with Computer System
SASD

Software Development = @@0® i: Procedural Programming
Object-Oriented Programming .
OOAD

ENDABLE SOFTWARE h.ON'EUK 5
LABORATORY Imwnnsm’

Computational Thinking = ©®®,,

http://cse.konkuk.ac.kr/

Procedural Programming

« A program is organized with procedures.

— Procedure/Function
*building-block of procedural programs
statements changing values of variables

— Focusing on data structures, algorithms, and sequencing of steps
*Algorithm : a set of instructions for solving a problem
*Data structure : a construct used to organize data in a specific way

— Most computer languages (from FORTRAN to C) are procedural ones.

'' ! i struct account {

Procedurel Deposit(){...} \ char name:
S / int accountld;

i Procedure 2: Withdraw() {...} ; i float balance;
'' / float interestYTD:;
e 1 i o e NN .~—<<Use>> I char accountType;

Procedures (with Algorithms) Data Structure

EPENDABLE SOFTWARE h.ON'EUK
LABORATORY Im‘\mnsrr"i'

http://cse.konkuk.ac.kr/

Object-Oriented Programming

« A program is organized with objects.

— Focusing on objects and their communications.

*Object : consisting of data and operations (functions)

*Object communication : an object calls an operation of other objects with its data
— Providing system functionalities through object communications

*No explicit data flow

*Only communication sequences among objects

data

operation

EPENDABLE SOFTWARE
LABORATORY

BankAccount

-balance: float
-interestYTD: float
-owner: char
-account_number: int

+MakeDeposit(amount: float): void
+WithDraw(amount: float): flaot
+Transfer(to: BankAccount, amount: float): bool

KU EONEUK
UNTVERSITY

| Class BankAccount {
i private: i
float balance:
i float interestYTD; i
char * owner:
i int account_number; i
i public:
void Deposit (float amount) {...} |
i float WithDraw (float amount) {...} i
bool Transfer (BankAccount to, float amount) {...}

http://cse.konkuk.ac.kr/

Object-Oriented Programming - OOAD

* OOAD (Object-Oriented Analysis and Design)
— A software development methodology for Object-Oriented programs
— OOA + 00D

» Object-Oriented Analysis (OOA)
— Discover the domain concepts/objects (the objects of the problem domain)

* Object-Oriented Design (OOD)
— Define software objects (static)
— Define how they collaborate to fulfill the requirements (dynamic)

il ;’%DEPENDABLE SOFTWARE KEONKUK
N4 LABORATORY IiU UNIVERSITY
L

http://cse.konkuk.ac.kr/

An OOAD Example - Dice Game

- Define domain Define interaction Define design class
Define use cases . .
model diagrams diagrams
e 00— | e 00 B I

_ Interaction Diagram
Use Case : Play a Dice Game

- Player requests to roll the dice.
- System presents results. E;&:;() : \\

play() | roli()

Design Class Diagram

‘DicaGoma l di: Die
u \ ‘
- If the dice’s face value totals seven, e\) o "
player wins; otherwise, player loses. '_ﬁl_-_*@&'ﬂﬂ!-ﬂ—;s)
)
)
- el —»
L= =§Eﬁ \Y)))
| " Q)A\l.(\ T $\
! \
\ \ ‘
o4 -
Player 1 Rolls 2| Die v i
name faceValue b
1 2
Plays i i DiceGame | Die
1 b die1 : Die 1 2 | faceValue : int
— b die2 : Die
DiceGame 1 ke i | getFaceValue() : int

http://cse.konkuk.ac.kr/

Software Engineering

« Several definitions

— The application of a systematic, disciplined, quantifiable approach to development, operation and
maintenance of software [IEEE Standard 610.12]

— The disciplined application of engineering, scientific, and mathematical principles and methods to
the economical production of quality software [Watts Humphrey]

 Software Engineering is
— All activities to develop and manage software well.
— Theories, methods and tools for professional software development.

| DEPENDABLE SOFTWARE KU KONEKUK 1 O
N LABORATORY TUNIVERSITY

http://cse.konkuk.ac.kr/

Software Engineering

« Software engineering is an engineering discipline that is concerned with all aspects of
software production from the early stages of system specification through to maintaining
the system after it has gone into use

» Engineering discipline
— Using appropriate theories and methods to solve problems bearing in mind organizational and
financial constraints.

« All aspects of software production
— Not just technical process of development

— Also project management and the development of tools, methods, etc. to support software
production.

-
DEPENDABLE SOFTWARE I{l]’ KONKUK 1 1
LABORATORY UNIVERSITY

http://cse.konkuk.ac.kr/

Importance of Software Engineering

« A number of software projects fail due to
— Increasing system complexity

*While new software engineering techniques help us to build larger and more complex systems, the demands
change constantly.

+Systems have to be built and delivered more quickly; larger, even more complex systems are required;
systems have to have new capabilities that were previously thought to be impossible.

— Failure to use software engineering methods

*It is fairly easy to write computer programs without using software engineering methods and techniques.

*Many companies do not use software engineering methods in their everyday work. Consequently, their
software is often more expensive and less reliable than it should be.

» We need to be able to produce reliable and trustworthy systems economically and
qUiCk|V(on time).

* It is usually cheaper, in the long run, to use software engineering methods and techniques
for software systems rather than just write the programs as if it was a personal
programming project.

) DEPENDABLE SOFTWARE I{l EONKUK 1 2
LABORATORY UNTVERSITY

http://cse.konkuk.ac.kr/

The Software Process

« A structured set of activities required to develop a software system.

« Many different software processes, but all involve:
— Specification : defining what the system should do

— Design and implementation : defining the organization of the system and implementing the
system.

— Validation : checking that it does what the customer wants
— Evolution : changing the system in response to changing customer needs

« A software process model is an abstract representation of a process.

— Describes a process from some particular perspective.
* Activities in the process
*The ordering of these activities

il ,":‘DEPENDAE!LE SOFTWARE I{ l]’ KEONKUK
Y LABORATORY UNIVERSITY
R !

13

http://cse.konkuk.ac.kr/

Software Process Models

The waterfall model
— Plan-driven model
— Separate and distinct phases of specification and development

Incremental development
— Specification, development and validation are interleaved.
— May be plan-driven or agile.

Integration and configuration (Component-based Development)
— The system is assembled from existing configurable components.
— May be plan-driven or agile.

In practice, most large systems are developed using a process that incorporates elements
from all of these models.

) -
() DEPENDABLE SOFTWARE I{l]’ EONEUK 1 4
N LABORATORY UNTVERSITY
L\ 4

http://cse.konkuk.ac.kr/

The Waterfall Model

Requirements
definition

Y

System and
software design

A

/
Implementation
and unit testing
Integration and
system testing

T fOperation ancD

\ maintenance

EPENDABLE SOFTWARE I{ l]’ KONKUK
LABORATORY TINTVERSTTY

http://cse.konkuk.ac.kr/

Incremental Development

Concurrent
activities

it — > Initial
ecification :
Sp version
Outline | — > Interm_ediate
description > Development 5 versions
. Final
Validation — > version

EPENDABLE SOFTWARE h.ON'EUK
LABORATORY Imwnnsm’

http://cse.konkuk.ac.kr/

Software Process Model

- Software (Development) Process models

— Defining a distinct set of activities, actions, tasks, milestones, and work products that are
required to engineer high-quality software, systematically.

— Defining Who is doing What, When to do it, How to reach a certain goal.

< 1960s ~ 2000s > < 2000s ~ Now > <in practice >
Waterfa-” MOdeI ‘\\‘\ App“ca‘[ion Domains
Incremental Model .\ * Waterfall Model tailored for
''' ‘\\ \\“ "‘*~~.___~‘-‘._._."-.-.-.'-"‘.‘.'.'.'. Apphca‘“on Doma|ns
Evolutionary Model <O T
... \\\\ss\\‘\\\‘\ —_——____-_____—"_._:'-.-.'.‘-"""" Appllcatlon Domalns
Component-Based Development ;---______:\3:\\\\ S
o Iterative Model tailored for
Iterative Model (agile) T Application Domains

-
' DEPENDABLE SOFTWARE KU KONKUK
LABORATORY UNTVERSITY

17

http://cse.konkuk.ac.kr/

Iterative Model - Agile

« Agile development is an umbrella term a group of methodologies weighting rapid
prototyping and rapid development experiences.
— Lightweight in terms of documentation and process specification
— Example: XP(extreme Programming) , TDD(Test Driven Development)

 Agile methods attributes
— |terative (several cycles)

— Incremental (not delivering the product at once) Requirements Analysis & Design
— Actively involve users to establish requirements i
. Planning
« Agile Manifesto Planning e
— Individual over processes and tools
— Working software over documentation Evaluation A

— Customer collaboration over contract negotiation
— Responding to change over following a plan

KU KONKUK 18
UNTVERSTTY

http://cse.konkuk.ac.kr/

Iterative Model - UP

A
vy

THE RATIONAL

UNIFIED PROCESS
 Rational Unified Process (RUP) or UP AN INTRODUCTION

Trirp EpiTioN

— A Software development approach that is
* Iterative (Incremental, Evolutionary)
— Each iteration includes a small waterfall cycle.

 Risk-driven / Client-driven / Architecture-centric
*Use-case-driven

— A Well-defined and well-structured software engineering process
*4 Phases and 9 Disciplines

— A de-facto industry standard for developing OO software

developmentcycle
A
e ;] N
iteration phase
A
7)
inc. elaporation con|strucition fransition
milestone release increment final production

An iteration end-point A stable executable subset The difference (delta) release

when some significant of the final product. The between the releases At this point, the system

decisionor evaluation end of each iteration is a of 2 subsequent is released for
EPENDABLE SOFTWARE KONKUK minor release. iterations. roduction use.
LABORATORY KU UNIVERSITY occurs. p 19

http://cse.konkuk.ac.kr/

Verification & Validation

+ Validation testing

— To demonstrate to the developer and the system customer that the software meets its
requirements.

— A successful test shows that the system operates as intended.

« Verification (Defect) testing

— To discover faults or defects in the software where its behavior is incorrect or not in conformance
with its specification.

— A successful test is a test that makes the system perform incorrectly and so exposes a defect in

the system.
Input test data %\ Inputs causing

anomalous
behaviour

System

Y
Output test results

Outputs which reveal
the presence of
defects 20

EPENDABLE SOFTWARE I{ I KONKUK
LABORATORY TUNIVERSITY

http://cse.konkuk.ac.kr/

B

Actual Needs and
Constraints

User Acceptance (alpha, beta test)

System

Delivered
Package

System Test

Specifications |

AE

Analysis / Review

System

Integration

. Subsystem /I .
Design/Specs \I Integration Test Subsystem
L Analysis / Review
Unit/ 8
Unit /
o Components [Meodule Test Components
Specs
\) 1
Y User review of external behavior as it is determined or
becomes visible
Test Test Test Test
—>
cases data results reports
Y
Design test Prepare test Run program Compare results
cases data with test data to test cases

EPENDABLE SOFTWARE
LABORATORY

21

http://cse.konkuk.ac.kr/

Stages of Testing

» Development testing

— The system is tested during development to discover bugs and defects.
*Unit testing
*Integration testing
*System testing

* Release testing
— A separate testing team test a complete version of the system before it is released to users.

» User testing
— Users or potential users of a system test the system in their own environment.

‘ () DEPENDABLE SOFTWARE KUKONKUK
] LABORATORY UNTVERSITY

22

http://cse.konkuk.ac.kr/

Development Testing

« All testing activities that are carried out by the team developing the system.

— Unit testing
«Individual program units or object classes are tested.
+Unit testing should focus on testing the functionality of objects or methods.
— Component testing (= Integrated testing)
*Several individual units are integrated to create composite components.
*Component testing should focus on testing component interfaces.
— System testing
*Some or all of the components in a system are integrated and the system is tested as a whole.
«System testing should focus on testing component interactions.

@

i ' DEPENDABLE SOFTWARE EONEUK 2 3
' LABORATORY I iU UNIVERSITY

¢

http://cse.konkuk.ac.kr/

Software Change

« Software change is inevitable.
— New requirements emerge when the software is used.
— The business environment changes.
— Errors must be repaired.
— New computers and equipment is added to the system.
— The performance or reliability of the system may have to be improved.

« A key problem for all organizations is to implement and manage the change to their
existing software systems.

 Evolutionary Development (incremental, iterative model) is needed
— And traceability analysis

‘ () DEPENDABLE SOFTWARE KUKONKUK
] LABORATORY UNTVERSITY

24

http://cse.konkuk.ac.kr/

Contents in Detail

o3|

1.
An Introduction
to Object-
Oriented
Development

EPENDABLE SOFTWARE
LABORATORY

12

2FH

Object-Oriented
Development

3 Object-Oriented

Object-Oriented

. Principles

56 UML

KU S

Lot
o>
Jio
Hl

i i k=S

* OOAD vs. SASD
* Software Development Process

o AIZEQN IS FHolg = QUL

+ OOAD 2t SASD2| XIO|™ =S T+ 28 == ULt

o CIYSH AT EQIO | BIHZ/ T2 A S
Tt Falg = ALk

<L

« Zi M| X| ¢ (Object-Oriented)S Ho|gt 4= UL, « Object-Oriented

« A X Principles2 Oldidtl M&g == QUCE « Object-Oriented Principles

*« UML 2.02 #d3t= 137 CHOJ0j 2 S0 -
2XS 0|3t £ QUr}, 13 UML Diagrams

25

http://cse.konkuk.ac.kr/

Contents in Detail

gl 24 Ue

7 Part I. Introduction

2 89 Partll. Inception U
Object- .
Oriented .
Analysis and Part I.II. Elaboratl_on .
Design 10 Iteration 1 — Basics .
- O0OA
;\I’VI’L\’I‘\'G UML .
ANLATTERDSN 11 - 00A
12 - O0OD .
CRAIG | \H\I‘t\ 13 *
14 - OOD
15 L]
16 - OOD
17 - 00D)
18 :
19 - 00l)
l@DEPENDAELE SOFTWARE KU II:.;E])‘I:]FI;';LHII"E

OOAD S UP 7|27 8= Fae|g == ULt
WIHOf Case Study LHES =l = QALY

UP 7|2t 0OADS| A EtA Q! Inception EHAHIE

Oofsig == AUCH.

Inception THAH| Q| 2#5& AT 5= ULH
718/H7|5 STFAIE S e = UL
s}

Use CaseE &% == ULt

Analysis tHAH O 2&2 O|sle == QULCE.
Domain model2| S& 2 O[sfjst &-8% == Q!
C}.

Sequence diagram?| =& & O[s{{st 0 =8
4= QUL

Operation contract?| 552 0|8 4= QUCH.

Design THA| Q| &2 O|s|& 5= ULt
Package diagram®| 5% O|sfist1 &8 =

ULt

Sequence diagram?2| =& & O[s{{st 0 &8
= QUCk

Class diagram2| =& 2 O[s{{st 0 &8 =
RACE.
GRASP C|AtQl mf & ol =Xt 2utd ol Mg

S oot == ULt
OO0 DesignOf| Al Implementation2 £ 9|
MetiPd 2 »etstA olsig 5= ULt

Mg 2ol Bye ol 4 olck

» Chapter 1. Object-Oriented Analysis and
Design

» Chapter 2. Iterative, Evolutionary, and Agile

» Chapter 3. Case Studies

» Chapter 4. Inception is Not the Requirements
Phase

» Chapter 5. Evolutionary Requirements

» Chapter 6. Use Cases

» Chapter 7. Other Requirements

» Chapter 8. Iteration 1 Basics
» Chapter 9. Domain Models

» Chapter 10. System Sequence Diagram
» Chapter 11. Operation Contracts

» Chapter 12. Requirements to Design Iteratively

» Chapter 13. Logical Architecture and UML
Package Diagrams

» Chapter 14. On to Object Design

» Chapter 15. UML Interaction Diagram

» Chapter 16. UML Class Diagram

» Chapter 17. GRASP: Designing Objects with
Responsibilities

» Chapter 19. Designing for Visibility
» Chapter 20. Mapping Designs to Code

26

http://cse.konkuk.ac.kr/

Contents in Detail

ChR AFR
20 :
21 Statechart Diagram
3. _
Advanced 22 Component Diagram
Topics in UML
23 Extension Mechanism

of UML

4.

Summary es

OOAD Summary

EPENDABLE SOFTWARE
LABORATORY

KU S

. Statechart?| =& ™=t}
28510] RS +UY 4 ALt

+ Component Diagram= O|sljst1 223
oIC}
AA .

« UMLS M AT
QUL
« MOF2| 7l &2 o8l == QUL

—_

UM LHE

« Statechart Diagram

+ Component Diagram

» Extension Mechanism of UML

SN LHE

* OOAD Summary

27

http://cse.konkuk.ac.kr/

Team Activity
OOPT - A New OOO Digital Watch

http://cse.konkuk.ac.kr/

Team Project with OOPT

A software development process based on RUP
Tailored to software engineering classes in universities
A revision of OSP (Object Space Process)
Have been practiced and refined for 10 years

Stage 1000. Plan

10 Activities

|

-

\

a. ongoing
b. optional

c. may defer
d. varied order

0. Analyze

Define Create Preliminary Define i d
A Draft Plan — Investigation Report Requirements —* ‘;' Iongot:irsll;t (s
tivities c. optional
Record a Implement bd Define
Terms in Glossary i Prototype Business Use Case - Analyze
a.cd —
Define Business Define Draft =~ Develop System) \
Concept Model System Architecture Test Case =
1 - Refine - Define
> _ > . —_—
Refine Use Case Diagrams Domain Model
Project Plan
- o
. Define System - Define
[akisil Refine Glossary > Sy > —

EPENDABLE SOFTWARE
LABORATORY

K

EONEUK
UNTVERSITY

Sequence Diagrams

Operation Contracts

Define

State Diagrams

Refine System
Test Case

Perform 2030
Traceability Analysis

http://cse.konkuk.ac.kr/

A New OOO Digital Watch

» Supposed to develop a new OOO digital watch

* Let's analyze and design your own new OOO digital watch.
— OOAD development method : OOPT
— Use a UML tool
*Not use Statechart, Communication, Activity, Package, Deployment Diagrams, for now.
— Basic Requirements & Assumption :
* A set of predefined/fixed hardware (1 LCD, 4 buttons, 1 buzzer, 1 SW Controller)
*Dynamic SW Configuration (4 among 6 functions)

— Time keeping, Timer, Stopwatch, Alarm (+2 function)
*4 alarms

— Instructions
*Take care of the layered architecture of your system under development.
*Take care of your system context — embedded system!
*Make every assumptions clear, feasible and consistent.

» Team activities:

Stage 1000 : Plan

Stage 2000 > 2030 : Analyze

Stage 2000 > 2040 : Design

Stage 2000 > 2050 : Implementation

Hwn =

EPENDABLE SOFTWARE I{ l]’ KONKUK
LABORATORY TINTVERSTTY

http://cse.konkuk.ac.kr/

A New OOO Digital Watch

» Supposed to develop a new OOO digital watch

CASIO

* Let's analyze ang
— OOAD devels

— Usea UML t
*Not use S

— Basic Requirg
*A set of g
*Dynamic
*4 alarms

— Instructions
* Take care
* Take care
*Make eve

5, for now.

ller)

COOR LE0) Oy

« Team activities:
1. Stage 100d
2. Stage 200(
3. Stage 200(
4. Stage 200(

EPENDABLE SOFTWARE I{ l]’ KONKUK
LABORATORY TINTVERSTTY

http://cse.konkuk.ac.kr/

Team Project

- gz B F95iM 2L M2 (3, 01 F)

— 49| 1El
— d
Schedule
Week Date 29 (12:30~14:30) - HIEI 1214= T2 (14:30~16:30) - HF=I 1214%
0304 030g | Course Introduction Lab. Orientation *
- Lecture Note
2 03.11 f 03.15 1/2 Object-Oriented Development 3/4 Object Oriented & Principles
OOPT Stage 1000 - Plan & Elaboration *
3 0318/ 03.22 Case Study - LMS 5/6/7/8/9 UML , Domain Model
Case Study - PRINTER
4 03.25 f 03.28 Team Practice #1 Team Presentation #1 - OOPT Stage 1000
OOPT Stage 2030 - Analyze *
5 04.01 / 04.05 0711 System Sequence Diagram , Operation Contracts Case Study - LMS
Case Study - PRINTER
6 04.08 /0412 Team Practice #2 Team Presentation #2 - OOPT Stage 2030
7 04.15 f 04.19 12713 Logical Architecture 14/15 Interaction Diagrams
8 04.22 Midterm Exam. *
OOPT Stage 2040 - Design *
g 04.29 / 05.03 16 Class Diagram Case Study - LMS
Case Study - PRINTER
10 05.06 / 05.10 EFEY) Team Practice #3 - CTIP &7 = «
QOPT Stage 2050 - Construct *
s am i mE e o OOPT Stage 2060 - Testing
11 0513 /0517 #3 -
/ Team Presentation #3 - OOPT Stage 2040 Case Study - LMS
Case Study - PRINTER
12 05.20 f 05.24 17/19/20 GRASP | Visibility 22/23 Component Diagram , MOF
13 05.27 /1 05.3 Team Presentation #4 - 1st Cycle Team Practice #4 *
14 06.03 / 06.07 Team Presentation #5 - 2nd Cycle Team Practice #5
15 06.10 / 06.14 Team Presentation #6 - 3rd Cycle (Reserved)
16 06.17 Final Exam.

EPENDABLE SOFTWARE
LABORATORY

http://cse.konkuk.ac.kr/

